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The Analysis of Nonstationary Vibration Data

Allan G. Piersol

Procedures for analyzing the random vibration

environments of transportation vehicles and other

machinery are well defined and relatively easy to

accomplish, as long as the vibration data are sta-

tionary in character; i.e., the average properties

of the vibration do not vary with time. There are

cases, however, where a random vibration environ-

ment of interest is naturally nonstationary in

character, for example, the vibrations produced

during the launch of a space vehicle. A well de-

veloped methodology exists for the analysis of

nonstationary random data, but the resulting analy-

sis procedures require measurements from repeated

experiments that often cannot be obtained in prac-

tice. The alternative then is to employ a para-

metric analysis procedure that can be applied to

individual sample records of data, under the as-

sumption that the data have a specific nonstation-

ary character. This paper reviews the general

methodology for the analysis of arbitrary nonsta-

tionary random data, and then discusses a specific

parametric model, called the product model, that

has applications to space vehicle launch vibration

data analysis. Illustrations are presented using
nonstationary launch vibration data measured on the

Space Shuttle orbiter vehicle.

INTRODUCTION

The launch vibration environment of space vehicles is highly non-

stationary in character due to a sequence of time-varying aeroacoustic

events that govern the dynamic loads on the vehicle. The most important

of these events and the excitations they produce are (a) the acoustic

noise excitation from the rocket motors during lift-off, (b) the excita-

tion due to shock wave/boundary layer interactions during transonic

flight, and (c) the turbulent aerodynamic boundary layer excitation
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during flight through the region of maximum dynamic pressure (max "q") .
These three events are clearly apparent in the time history of the
typical Space Shuttle launch vibration measurement shown in Figure I.
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Figure i. Typical Vibration Time History During A Space Shuttle Launch.

Traditionally, the vibration data measured on space vehicles during

launch are analyzed by selecting short time slices of data at those

times when the overall value of each measurement reaches a maximum

during each of the above noted events. Auto (power) spectral density

functions are then computed for each time slice, and are used to

describe the vibration spectra for those events. However, because space

vehicle launch vibration data are basically random in character, this

analysis procedure poses a serious problem. On the one hand, it is

clearly desirable to make the spectral analysis with a small frequency

resolution bandwidth B to properly extract the spectral variations in

the data, and also with a small averaging time T to properly define the

time variations in the data. On the other hand, because the data repre-

sent a random process, the spectral estimates will involve a statistical

sampling error [2, p. 283], which can be approximated in terms of a

normalized random error (coefficient of variation) by 6 = [BT] -I/2.

Hence, as the bandwidth B is made smaller to obtain a better spectral

resolution, and the averaging time T is made smaller to obtain a better

time resolution, the random error in the estimate increases, often to

levels in excess of the bias errors that would have occurred if a wider

resolution bandwidth B and/or averaging time T had been used.

Several studies of this nonstationary data analysis problem have

been performed dating back to the 1960's [3,4], and including a recent

study directed specifically at the analysis of the Space Shuttle launch

aeroacoustic and structural vibration environment [5]. This paper sum-

marizes the theoretical background for improved vibration data analysis

procedures recommended in [5], and illustrates applications using a

Space Shuttle launch vibration measurement. The suggested procedures

should also be applicable to expendable launch vehicle vibration data.



ANALYTICAL BACKGROUND

Many analytical methods have been proposed over the years for
describing the spectra of nonstationary random data. From the viewpoint
of describing mathematically rigorous input-output relationships for
physical systems, including time-varying systems, the double frequency
(generalized) spectral density function is broadly accepted as the most
useful spectral description for nonstationary data. A full development
and discussion of various forms of the double frequency spectrum are
presented in [2, pp. 448-456]. For the purposes of applied data analy-
sis, the instantaneous spectral density function (sometimes called the
frequency-time spectrum or the Wigner distribution) is usually con-
sidered a more useful spectral description for nonstationary data. The
instantaneous spectrum is detailed in [2, pp. 456-465], and will be used
here as the starting point for the analytical discussions of improved
spectral analysis procedures for launch vehicle vibration data.

The Instantaneous Spectrum

Consider a random process defined by an ensemble of sample func-

tions {x(t) }, where individual measurements of the random process

produce time history records xi(t); i = 1,2,3, ....,N, as illustrated in

Figure 2. The instantaneous autocorrelation function of the random pro-

cess is given by [2, p. 445]

Rxx(m,t) = E[x(t-m/2)x(t+T/2) ] (i)
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Figure 2. Sample Records Forming Nonstationary Random Process.



where E denotes an "expected value", which in practice would be approxi-
mated by an ensemble average over i = 1 to N sample records. The instan-

taneous autospectral density function is then defined by

Wxx(f,t) = ] R×x(T,t)cos2_fTd_ (2)

In words, the instantaneous autospectral density function is the Fourier

transform of the instantaneous autocorrelation function computed over T

Since the instantaneous autocorrelation function is always real valued,

the Fourier transform involves only the cosine term. This fact also

leads to the following properties of the instantaneous autospectrum:

Wx×(f,t) = W××(-f,t)

OO

_Wxx(f,t)df = E[x2(t) ]

W×x(f,t) = Wxx*(f,t) (3)

OO

_ Wxx(f,t)dt = E[IX(f)I 2 ] (4)

In Equation (3), the asterisk (*) denotes complex conjugate, and in

Equation (4), X(f) is the Fourier transform of x(t) given by

P

X(f) = ]x(t)e-j2_ftdt (5)

where the integral in Equation (5) is assumed to exist. In words,

Equation (4) says that the integral of the instantaneous autospectrum

over frequency at any time yields the mean square value of the data at

that time, while the integral over time at any frequency yields the

"energy" spectral density of the data at that frequency. These two

properties closely relate the instantaneous autospectrum to the ordinary

autospectrum (also called the "power" spectrum) that is commonly comput-

ed for random data in practice, including launch vehicle vibration data.

Practical Measurement Considerations

The instantaneous autospectrum, W(f,t) defined in Equation (2),

provides a rigorous description of nonstationary vibration data that

lends itself well to the formulation of design criteria and test speci-

fications. However, the estimation of an instantaneous autospectrum

theoretically requires an ensemble average over a collection of sample
records to first obtain the instantaneous autocorrelation function

defined in Equation (I) . For the case of spacecraft launch vibration

data, this means that measurements would have to be made at identical

locations on numerous launches of the same spacecraft under identical

conditions. For most space vehicles, this clearly is not feasible. For

the special case of Space Shuttle, where the same launch vehicle is used

many times and the outputs of certain vibration transducers have been

recorded several times on at least one of the orbiter vehicles, an

ensemble averaging analysis approach might be considered. Even here,

however, the launch conditions have not been identical on the various

Space Shuttle launches due to differences in payload weights and SSME

thrust. Furthermore, there have not been a sufficient number of launches

to date (with repeated measurements at identical locations) to provide



ensemble averaged estimates with acceptable sampling (random) errors.
See [2, p. 285] for a discussion of the sampling errors in spectral
estimates produced by ensemble averaging procedures.

The alternative to ensemble averaging is the short time averaging
analysis procedure discussed in the Introduction. However, this approach
involves an inherent conflict between the frequency resolution bandwidth
B and the averaging time T needed to achieve spectral estimates with
acceptable bias and random estimation errors. To elaborate on this
problem, from [2], the bias error due to the finite frequency resolution
bandwidth B used to compute the spectral density estimate at any time t
is approximated by

#l

b[W(f,t) ] = (B2/24) d2[W(f,t) ]/df 2 (6)

where the hat (^) denotes "estimate of". The approximation for the bias

error due to the finite averaging time T used to compute the spectral

density estimate at any frequency f has a similar form, namely,

A

b[W(f,t) ] = (T2/24) d2[W(f,t) ]/dt 2 (7)

In Equations (6) and (7), the second derivatives essentially represent

the sharpness of peaks and notches in the variations of W(f,t) with both

frequency and time. Finally, as noted in the introduction, the random

error due to the finite sample size used to compute the spectral density

estimate is approximated in terms of the normalized standard deviation

of the estimate (the coefficient of variation) by

A

6 = G[W(f,t) ]/W(f,t) = I/[BT] I/2 (8)

Since B and T appear in the denominator of Equation (8), but in the

numerator of Equations (6) and (7), respectively, it is clear that there

will be at least some frequencies and times when it is not possible to

estimate a time varying spectrum by short time averaging procedures that

will have an acceptable combination of bias and random errors. This

problem can be circumvented only by assuming a specific model for the

nonstationary character of the data, which can then be exploited for

analysis purposes (a parametric procedure) .

The Product Model

A special model for nonstationary data that has received

considerable attention for applications to space vehicle launch

vibration data [2-5], as well as nonhomogeneous atmospheric turbulence

data [6], is the product model, which is defined as a nonstationary

random process {x(t) } producing sample records of the form

x(t) = a(t)u(t) (9)

where a(t) is a deterministic function, and u(t) is a sample record from

a stationary random process {u(t) } with zero mean and unit variance;

i.e., u = 0 and u 2 = i. For the special case where a(t) is restricted

to positive values, it can be interpreted as the time varying standard

deviation of {x(t) }. It follows from Equations (i) and (2) that the



instantaneous autocorrelation and autospectral density functions for the
product model are given by

Rxx(T,t ) = Raa(Y,t)Ruu(T ) Wxx(f,t ) = SSaa(_,t)Suu(f-_)d5 (i0)

where the S terms in the spectral result are two-sided spectral density

functions defined as

Saa(f,t) =_Raa(T,t)e-J2_fr dT Suu(f ) = SRuu(T)e-J2_fT dT

--OO

(ii)

Note in Equations (I0) and (ii) that the autocorrelation and auto-

spectral density functions are nonstationary for a(t), but are station-

ary for {u(t) } since this is a stationary random process. Also note that

it is common practice to work with one-sided spectra (defined for

positive frequencies only), as opposed to two-sided spectra. The one-

sided spectra are related to the two-sided spectra as follows:

W(f,t) = 2W(f,t);0 < f

= 0 ;f < 0

G(f) = 2S(f) ;0 < f

= 0 ;f < 0

(12)

The Locally Stationary Model

An important special class of nonstationary random processes that

fit the product model of Equation (9) are locally stationary data [2,7]

(sometimes called uniformly modulated data [8]). Data are said to be

locally stationary if they fit Equation (9) where a(t) varies slowly

relative to u(t); i.e., the highest frequency component in Saa(f,t ) is

at a much lower frequency than the lowest frequency component in Suu(f).

For this case, the instantaneous autospectral density function in Equa-

tion (i0) can be approximated by

Wxx(f,t ) = a2(t)Guu(f) (13)

where W(f,t) and G(f) are one-sided spectra, as defined in Equation

(12), and a2(t) is the instantaneous mean square value of the data (the

instantaneous variance if the mean value is zero). Hence, the

instantaneous autospectrum for locally stationary data becomes a product

of independent time and frequency functions that can be measured

separately. Specifically, one can estimate the instantaneous

autospectrum from a sample record of length T r by two operations, as

follows:

(i) Compute the autospectrum of the record by averaging over the entire

record length T r using a narrow spectral resolution bandwidth B.

(2) Compute the time varying mean square value over the entire record

bandwidth B r using a short averaging time T.

The above operations permit the estimation of the instantaneous spectrum

with a good resolution in frequency and time, which suppresses the
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frequency and time interval bias errors in the estimate, while still
achieving a large bandwidth-averaging time product to suppress the ran-
dom errors in the estimate.

Hard-Clipped Analysis

The locally stationary model in Equation (13) is valid only if a(t)

varies slowly relative to u(t) in Equation (9). If this is not the case,

a(t) will act as a modulating function on u(t), and cause the spectrum

of x(t) to spread [2]. It follows that the computed average autospectrum

of x(t) will not be proportional to the autospectrum of the fictitious

stationary component u(t) in the product model; i.e., Gxx(f) _ c Guu(f)

where c is a constant. However, the autospectrum of the stationary com-

ponent u(t) can still be estimated, even though u(t) cannot be directly

measured, by a special procedure suggested and illustrated in [6].

Specifically, since a(t) represents a standard deviation which never

takes on negative values, and assuming the mean values of x(t) and u(t)

in Equation (9) are zero, it follows that the zero crossings of x(t)

will be identical to those of u(t) . Under the further assumption that

the random process {u(t) } has a normal (Gaussian) probability density

function, the stationary autospectrum of {u(t) } can be computed from a

hard-clipped version of a sample record x(t) by applying the "arc-sine"

rule [9], as follows:

(i) Hard-clip the record x(t) to obtain a new record y(t) defined by

y(t) = 1 for x(t) > 0

= -i for x(t) < 0

(14)

(2) Compute the autocorrelation function of y(t) to obtain Ryy(T).

(3) Compute the normalized autocorrelation function of u(t) from

Ruu(T) = sin[ (E/2)Ryy(T) ] (15)

(4) Compute the autospectrum of u(t) by Fourier transforming the auto-

correlation function of u(t) over a delay time (l/B), where B is the

desired spectral resolution, as follows:

(l/B)
P

Guu(f) = 4J Ruu(T)COS(2_fT) dT (16)

0

The computed spectrum of u(t) in Equation (16) does not, of course,

represent the actual autospectrum of the nonstationary vibration

environment that was measured. It is simply the autospectrum of the

fictitious u(t) in the theoretical product model given by Equation (9).

However, with this term, and an estimate for the time-varying term a(t)

in Equation (9), one could simulate the nonstationary spectrum Wxx(f,t)

in the laboratory by applying a nonstationary excitation produced by

multiplying a signal with a stationary spectrum Guu(f) by a time-varying

signal a(t).



APPLICATIONS TO LAUNCHVIBRATION DATA

It is generally agreed that the desired spectral representation for
the nonstationary vibration measurements made on space vehicles during
launch is a spectrum that defines the maximum mean square value in each
frequency resolution bandwidth during the nonstationary event, inde-
pendent of the times when the maximum values in the various bandwidths
occur. Such a spectral representation, referred to hereafter as the
maximax spectrum, generally will not represent the instantaneous spec-
trum of the data at any specific instant of time, unless the data are
stationary or locally stationary. However, since vibration induced mal-
functions and failures of space vehicle structures and equipment tend to
be frequency dependent, the maximax spectrum does provide a conservative
measure of the environment from the viewpoint of damage potential and,
hence, constitutes a rational basis for the derivation of test specifi-
cations and design criteria.

The issue at hand is whether the desired maximax spectrum of the
space vehicle vibration response during a nonstationary launch event can
be adequately approximated by £he maximum of the instantaneous spectrum
computed assuming the data are locally stationary during the event. This
matter was empirically evaluated for Space Shuttle launch vibration and
aeroacoustic data in [5]. The general conclusion from that reference is
that, even though the launch vibration data do not always make a rigor-
ous fit to the locally stationary model, the discrepancies of the maxi-
mum instantaneous spectrum (computed assuming local stationarity) from
the maximax spectrum for each launch event are negligible compared to
the errors that occur in a short time averaged spectral calculation. (It
should be mentioned that this conclusion does not necessarily apply to
aeroacoustic data). An illustration of the results from [5] is now pre-
sented for a vibration measurement on a Space Shuttle payload during the
STS-2 launch.

Data Evaluation Procedures

To illustrate the data evaluation procedures, consider a vibration

measurement made on the OSTA-I payload during the second Space Shuttle

launch (STS-2) . The exact location of the measurement in terms of

orbiter coordinates was x = 920, y = -73, and z = 413. The measurement

is identified in [I] as V08D9248A (hereafter referred to as Accel 248).

The short time averaged (T = 1 sec) overall rms value for this mea-

surement is shown in Figure 3. Note that the three primary nonstationary

launch events are clearly apparent in the overall level versus time. The

maximum overall values during these events occur at about T+4 for lift-

off, T+45 sec for transonic flight, and T+60 sec for max "q" flight.

To calculate an approximate maximax spectrum and facilitate other

studies, the short time averaged spectra of this vibration measurement

through the three primary nonstationary launch events were computed

every sec (every 3 sec for max "q" data) from the beginning to the end
of each event, considered to be as follows:

(a) Lift-off: T+2 to T+8 sec (6 sec duration).

(b) Transonic flight: T+40 to T+48 sec (8 sec duration).

(c) Max "q" flight: T+52 to T+70 sec (18 sec duration).

i0
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Figure 3. Overall Vibration level Versus Time Measured By Accel 248

During STS-2 Launch.

These durations were selected to avoid contamination of the data for

each event by other events. For example, the transonic and max "q"

events clearly overlap, but the selected 4 sec separation should be

adequate to avoid serious contamination of the data for one event by the

other. Also, the first 2 sec of lift-off were omitted to avoid

contamination by the lift-off transient. The spectra were computed in

1/3 octave bands to enhance the BT product of the calculations and

suppress random errors. The frequency range for the 1/3 octave band

calculations was 16 to I000 Hz. The results are presented in the

appendix (Figures A1 through A3). To further facilitate data interpreta-

tions, all 1/3 octave band spectra were normalized to an overall mean

square value of unity. These normalized results are also detailed in the

appendix (Figures A4 through A6) . If the data were locally stationary

and there were no random sampling errors in the spectral estimates,

these normalized spectral plots for each event would be identical. From

Equation (8), the random error in the 1/3 octave band estimates is 6 =

2.1/[fo]i/2 (6 = 1.2/[fo]i/2 for the max "q" data), where fo is the center

frequency of the octave band.

Average Spectra

There are two basic ways to calculate the spectral portion of

locally stationary data, as given by Guu(f) in Equation (13). The first

and most common way is simply to compute the average spectrum over the

entire nonstationary event, or a sufficiently long portion of the event

(providing a total record length Tr) , to yield a BT r product that will

adequately suppress the random errors in the estimate. The values of the

resulting spectrum can then be divided by the area under the spectrum to

obtain a result with a mean square value of unity. This approach is

hereafter referred to as the direct average procedure. It is clear that

ii



the direct average procedure will give greatest weight to the spectral
values at those times when the magnitudes are large.

The direct average spectra of the 1/3 octave band values in the
appendix (Figures A1 through A3) were computed as follows. Let MSij
denote the mean square value of the data measured during the ith time
slice (i = 1,2,...,k) and in the jth frequency band (j = 1,2, ...,r)
during a given event. The average mean square value in each 1/3 octave
band over the nonstationary event of interest is given by

k
MSj = _MSij/k (20)

i=l

The direct average spectrum (without a normalization on bandwidth) is
then given by

r

Suu(J) = MSj/_MSj (21)

j=l

The second way to estimate Guu(f) in Equation (13) is to first

normalize the instantaneous spectrum of the data to a mean square value

of unity at all instances of time, and then compute the average of the

normalized spectrum over the entire nonstationary event. This approach

is hereafter referred to as the normalized average procedure. Unlike the

spectra produced by the direct average approach, the normalized average

procedure weights the spectral values at all times during the

nonstationary event equally, independent of their magnitudes.

The easiest way to normalize the instantaneous spectrum of data is

by the hard clipping procedure detailed in Equations (14) through (16).

This permits the normalized average spectrum to be computed directly by

Equation (16). However, for the Space Shuttle data, the normalized

average spectra were approximated by averaging the normalized 1/3 octave

band values given in the appendix (Figures A4b through A6b) . Specifi-

cally, for the ith time slice and the jth frequency interval,

r

NMSi j =MSij / _MSi j (22)

j=l

The normalized average spectrum (without a normalization on bandwidth)

is then given by

k

Guu(J) = NMSj =_NMSij/k (23)

i=l

Errors In Average Spectral Computations

The most direct way to assess the errors that would occur if the

Space Shuttle vibration measurement were analyzed using the locally

stationary assumption is first to compute its average spectrum by both

the direct and normalized average procedures, and then to compare these

results with the maximax spectrum after adjustments to make the mean

square values of the different spectral computations equal. This was

accomplished for each of the three primary nonstationary launch events.

The discrepancies between each of the average spectra, Gave(f), and the

12



corresponding maximax spectrum, Gmax(f), were computed in dB using the
formula

dB error(f) = i0 lOgl0 [Gave(f)/Gmax(f ) ] (24)

The dB errors between the average and maximax spectra determined using

Equation (24) are plotted in Figure 4. The standard deviations for these

errors are detailed in Table i.

Table I. Summary of Errors Between Average And Maximax Spectra.

Type of Average

Direct average

Normalized average

Standard Deviation of Errors, dB

Lift-off

0.38

0.81

Transonic

0.98

1.09

Max "q"

0.44

0.48

It is clear from Figure 4 and Table 1 that the direct average

produces a smaller net discrepancy from the maximax spectrum than the

normalized average. From [5], this was true for all the Space Shuttle

vibration and aeroacoustic measurements considered. Hence, there is no

question that the direct average provides the superior approach. This is

a gratifying result, since the direct average is the easier of the two

calculations to perform using current data analysis equipment and soft-

ware. Specifically, one simply computes the autospectrum of the record

as if it represented stationary data, except the ordinate scale of the

resulting spectrum must be independently established.

Applications To Narrowband Autospectra

The previous results and conclusions are based upon the spectra of

data measured in 1/3 octave bands under the assumption that the nonsta-

tionary trends observed in the 1/3 octave band data should be repre-

sentative of the trends in narrowband auto (power) spectra data (PSD's).

To check this assumption, the maximax and direct average autospectra for

the data measured by Accel 248 during lift-off were computed using a I0

Hz frequency resolution bandwidth with the results shown in Figure 5.

The analysis was conducted to only 500 Hz because, in terms of constant

bandwidth autospectra, the spectral levels of the data from Accel 248

during lift-off were very small above this frequency. The errors between

the average and maximax spectrum, as defined in Equation (24), are de-

tailed in Figure 6. The standard deviation of the errors for the narrow

bandwidth (i0 Hz) analysis is 0.6 dB, somewhat larger than the net error

of about 0.4 dB calculated from the 1/3 octave band data in Table 1

because of the larger random errors in the narrowband spectral esti-

mates (the random error between the maximax and average spectra should

be small since they are computed from the same data record, but there is

some random error because the maximax spectra are computed over a

shorter time interval).

13
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Estimation of Maximax Overall Value

The computation of an average spectrum constitutes only half the

analysis for data assumed to be of the locally stationary form. The

second half of the required analysis involves the computation of the

maximum overall value of the data during each nonstationary event of

interest; i.e., the maximum value of a(t) in Equation (13). As discussed

15



earlier, the desired overall value here is the overall for the maximax
spectrum, and not the maximum instantaneous spectrum. Of course, for
data which rigorously fit the locally stationary model, the maximax and
maximum instantaneous overalls would be equal since the mean square
values of locally stationary data reach their maximum values in all
frequency bands at exactly the same time. However, from [5], much of the
Space Shuttle launch vibration data do not rigorously fit the locally
stationary model; the locally stationary assumption is being used here
only as an approximation to be exploited for data analysis purposes.
This fact poses a practical analysis problem since the maximum instan-
taneous overall value of nonstationary data is relatively easy to esti-

mate, but a determination of the maximax overall val1_e requires a know-

ledge of the maximum value in each individual frequency band independent

of when that maximum value occurs.

The easiest way to approximate the overall value of the maximax

spectrum is to use the maximum instantaneous overall value as an approx-

imation. To assess the potential errors of such an approximation, the

overall values of the maximax spectrum and the maximum instantaneous

spectrum for Accel 248 during the three nonstationary launch events were

computed with the results shown in Table 2. Also shown in Table 2 are

the differences between the two overall values in percent and dB. The

maximax overall values were determined by selecting the highest spectral

value for each event in each 1/3 octave band in Figures A1 through A3,

independent of the time it occurred, and summing these 1/3 octave

values. The maximum instantaneous overall values were determined by

short time averaging procedures with an averaging time of 1 sec for the

lift-off and transonic data and 3 sec for the max "q" data, as shown in

Figures A4a through A6a (the error associated with this calculation is

discussed later).

Table 2. Summary of Errors Between Maximum Instantaneous and

Maximax Overall Values.

Calculation

Maximax overall, g

Max. instant, overall, g

Percent difference (rms), %

Percent difference (ms), %

Decibel difference, dB

Lift-off

3.06

2.99

2.3

4.7

0.2

Transonic

2 .78

2.61

6.5

13 .4

0.6

Max "q"

1.46

1.37

6.6

13.6

0.6

It is seen from Table 2 that the maximax overall value always

exceeds the maximum instantaneous overall value as expected, but gener-

ally by less than 15% of the mean square value (from [5], this appears
to be a reasonable error bound for both vibration and aeroacoustic data,

at least for Space Shuttle launches). Hence, to be conservative, it

would be wise to multiply the computed maximum instantaneous overall

mean square value of the vibration measured during each nonstationary

event by a factor of 1.15 to estimate the maximax overall mean square

value. Of course, there is still the problem of making an accurate esti-

mate for the maximum instantaneous mean square value during each of the

primary nonstationary launch events, which is discussed next.
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Estimation Of Maximum Instantaneous Overall Values

The maximum instantaneous overall value of vibration data during a

nonstationary event can be estimated in two general ways. The first and

easiest way is to compute the time varying mean square value of the

record during the nonstationary event using a short averaging time. The

maximum instantaneous overall value is then given by the square root of

the maximum mean square value calculated during the event. The short

time average may be computed using either linear or exponentially

weighted averaging procedures. The only problem is to select an approp-

riate averaging time.

The optimum averaging time to estimate the time-varying overall

value of nonstationary data is the longest averaging time that can be

used without smoothing the nonstationary trend in the overall value. In

more quantitative terms, it is the longest averaging time that will not

cause a significant bias error as defined by Equation (7). From the

time-varying overall values presented for the Space Shuttle launch

vibration data in [i], it appears that the most rapid variations in mean

square value with time (using an averaging time of T = 1 sec) occur for

the lift-off and transonic data, and resemble a half sine wave with a

period of at least 5 sec; that is,

a 2(t) = sin(_t/5) (25)

Using this criterion as the worst case for lift-off and transonic data,

it follows from Equation (7) that the bias error in the estimate of

a2(t) due to the finite averaging time T is given by

b[_2(t) ] = -[ (_T)2/600] sin(_t/5) (26)

The largest bias error occurs where t = 2.5 sec (the peak mean square

value) and is approximated by

bmax[_2(t) ] =-(_T)2/600 = -0.0165 T 2 (27)

where the minus sign means the finite averaging time always causes an

underestimate of the instantaneous overall value. Hence, an averaging

time of T = 1 sec, as used in this study, produces maximum mean square

value estimates that are biased on the low side by up to 1.7% or 0.07 dB

(rms value estimates that are low by less than 0.9%). From [i0], a

linear averaging time of T = 1 sec is broadly equivalent to an

exponentially weighted average with a time constant of about TC = 0.5

sec.

For the max "q" data in [i], the variations in the mean square

value with time are slower, more closely fitting a half sine wave with a

period of at least 12 sec. The maximum bias error due to the finite

averaging time in this case is approximated by

bmax[_ 2(t) ] = -0.00286 T 2 (28)

Plots of the finite averaging time bias errors defined in Equations (27)

and (28) are shown in Figure 7.
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It is seen in Figure 7 that the error in estimating the time-
varying mean square value for Space Shuttle launch vibration data by
short time averaging procedures will be about -0.i dB with linear
averaging times of T = 1 sec for the lift-off and transonic regions, and
T = 3 sec for the max "q" region. These linear,averaging times are

statistically equivalent [i0] to exponentially weighted averaging time

constants of TC = 0.5 and 1.5 sec, respectively. An error of -0.i dB

corresponds to an underestimate of the maximum mean square value of

2.3%, which is considered an acceptable error.
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- dB
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Figure 7. Maximum Bias Errors In Space Shuttle Overall Vibration

Level Estimates Due Finite Averaging Time.

In closing on this subject, it must be emphasized that the bias

errors in Figure 7 apply only to the Space Shuttle launch environment.

Because of differences in the early launch acceleration of various space

vehicles, the time durations for the primary nonstationary launch events

will be different, meaning the averaging time required to suppress the

bias errors in short time averaged mean square value estimates will also

be different.

Now concerning the random errors in short time averaged mean square

value estimates, Equation (8) applies where B = Br, the equivalent total

bandwidth of the data. The equivalent bandwidth B r will equal the actual

bandwidth of the data only for the case of "white noise"; i.e., data

with a constant autospectrum. As a rule of thumb, B r will usually be at

least one-quarter of the actual bandwidth of random vibration data.

Hence, even with the T = 1 sec averaging time, the normalized random

error of the overall mean square value estimate at any instant for a 1

kHz bandwidth vibration record is given by Equation (8) as 6[_2(t)] =

0.063 or about ±0.3 dB, which is considered an acceptable random error.
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The second way to estimate the overall value of vibration data dur-
ing a nonstationary event is by fitting an appropriate series function
to the squared values of the individual data points using conventional
regression analysis procedures. For relatively simple mean square
value/time variations, where there is a single maximum with values
falling monotonically on both sides of the maximum, a trigometric set
will often provide a good fit with only a few terms (see [6] for an
illustration). However, a more common approach is to fit the individual
squared values of the data, wn = x2(nAt) ; n = 1,2,...,N, with a Kth

order polynomial,

K

_2(nAt) = _ bk(nAt) k ; n = 1,2,...,N (29)

k=0

where 3 S K S 5 is usually adequate, as long as the time variation of

the mean square value is of the relatively simple form described above.

A least squares fit of the function in Equation (29) to the individual

squared data values yields a set of equations of the form [2, p. 363]

K K N

_b k _(n_t) k+m = _Wn(nAt) TM ;m = 1,2, ...,K (30)

k=0 n=l n=l

This set of K+I simultaneous equations are solved for the regression

coefficients, bk, which are then substituted into Equation (29) to

obtain the mean square value estimate versus time.

The regression analysis approach offers the advantage of

potentially lower random errors than are achievable by the short time

averaging analysis procedure described earlier, if the order of the

fitted polynomial is low. This is true because, with a low order fit,

more data are used to define the mean square value estimate at each

instant of time. However, if the time variations of the mean square

value are not relatively smooth through the maximum value, a significant

bias error can occur in the calculated maximum mean square value with a

low order polynomial fit. Increasing the order K of the fit to suppress

this possible bias error will increase the random error of the estimate,

exactly as reducing the averaging time T in the short time averaging

approach will increase the random error of the estimate.

CONCLUSIONS

The maximax auto (power) spectral density functions for the non-

stationary vibration data produced during a space vehicle launch can be

closely approximated by separate time and frequency averaging pro-

cedures. This approach to the analysis of such data allows the estima-

tion of spectral density functions with a much smaller combination of

bias and random errors. Although developed for Space Shuttle applica-

tions, this same procedure, with appropriately modified averaging times,

should apply to the analysis of the launch vibration data for expendable

launch vehicles as well.
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APPENDIX

Figures AI-A3. 1/3 octave band spectra for OSTA-I payload vibration mea-
surement (Accel 248) during Space Shuttle launch (STS-2).

Units: Mean square acceleration (MS Accel) in g2 (g**2).

Averaging Time: 1 sec for lift-off and transonic flight; 3 sec for

max "q" flight (T+x is end of averaging interval).

Figures A4-A6. Overall values and normalized 1/3 octave band spectra for

OSTA-I payload vibration measurement (Accel 248).

Units: Overall values - Mean square acceleration (MS Accel) in g2

(g**2).

Normalized spectra - normalized mean square acceleration

(NMS Accel) relative to the overall

(OA) in linear units and dB.

Averaging Time: 1 sec for lift-off and transonic flight; 3 sec for

max "q" flight (T+x is end of averaging interval).
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Figure AI. 1/3 Octave Band Vibration Levels During Space Shuttle

Lift-Off; STS-2 Accel 248.
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Figure A2. 1/3 Octave Band Vibration Levels During Space Shuttle

Transonic Flight; STS-2 Accel 248.
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Figure A3. 1/3 Octave Band Vibration Levels During Space Shuttle

Max "q" Flight; STS-2 Accel 248.
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Figure A4a. Overall MS Vibration Level During Space Shuttle Lift-Off;
STS-2 Accel 248.
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Figure A4b. 1/3 Octave Band Spectra Of Normalized MS Vibration Levels

During Space Shuttle Lift-Off; STS-2 Accel 248.
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Figure A5a. Overall MS Vibration Level During Space Shuttle Transonic

Flight; STS-2 Accel 248.
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Figure ASb. 1/3 Octave Band Spectra Of Normalized MS Vibration Levels

During Space Shuttle Transonic Flight; STS-2 Accel 248.
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Figure A6a. Overall MS Vibration Level During Space Shuttle Max "q"

Flight; STS-2 Accel 248.
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Figure A6b. 1/3 Octave Band Spectra Of Normalized MS Vibration Levels

During Space Shuttle Max "q" Flight; STS-2 Accel 248.
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